
NAGW-1333

(NASA-CR-192750) NONLINEAR

OYNAMICAL MODEL AND C_NTROL

FLEXIBLE BEAM (Rensselaer

Po|ytechnic Inst.) 17 p

TECBI41C L TD" TR
S -y2/" ." /

FOR A

N93-71629

Unclas

/. ¢

Z9/63 0153772

Center for Intelligent
Robotic Systems
for Space Exploration

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

_eclmlc_l Reports

_!neer3n_ an? F_y_'ca_ _O_CeS _t_a_
Unlvers!t_ o_ av. ,.::,,

College Park.,. _ar_Xaa_ _0_4_



NONLINEAR DYNAMICAL MODEL

AND CONTROL FOR A FLEXIBLE BEAM

by

Feiyuc Wang and John T. Wen

Rcnsselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering

Troy, New York 12180-3590

November, 1990

CIRSSE REPORT #75



Nonlinear Dynamical Model and Control for
A Flexible Beam

Feiyue Wang and John T. Wen

CII 8123

NASA Center for Intelligent Robotic Systems for Space Exploration

Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

November 26, 1990

Abstract

This paper presentsthe derivationof the dynamical motion equationsfora one-link

flexiblemanipulator and some preliminarystabilityresultsusing theseequations.The

most generalsetof equationsisderivedunder only the assumption of Hooke's Law and

negligiblelongitudaldeformation. The equations simplifyfirstby further assuming

small bending deformations, and then small bending and rotationalvelocities.The

natural modes of the iinearized partial differential equation are solved exactly, and they

are used to discretize the nonlinear small-bending equation. The resulting equation

has the same structure as the dynamical equation for rigid robots. An energy Lyapunov

function method is proposed for the stability analysis. Excellent agreement between the

analytic prediction and experimental results for the modal frequencies is also reported.

Keywords
Flexible manipulator; flexible beam; nonlinear dynamical model; energy Lyapunov analysis;

Hamilton's principle.

1 Introduction

Research effort on the modeling and control of flexible manipulators has increased dramati-

cally in the recent years. This is motivated in part by the hope for higher speed, less weight,

and better energy consumption offered by such mechanisms. These issues are most relevant

in the context of space structure construction and operation.

Many dynamical models have been proposed for one--link flexible manipulators in the

past; ranging from the distributed parameter linearized model in [1, 2, 3, 4, 5, 6] to some



\

recent nonlinear models such as the distributed model in [7] and the finite, discretized models

in [8, 9]. All of the above are based on the small deformation assumption, and there were

some confusion about the boundary condition (such as in [1, 4, 5]). This paper derives

the dynamical motion equation under the mild assumption of Hooke's Law (between stress

and strain) and negligible elongation. The small deformation assumption is then applied to

simplify the model to the form as that in [7]. Finally, the hub and bending velocities axe

further assumed small, and we obtain a set of linearized equations. These equations are the

same as that in [3, 6], but the integral term in the equation is removed, resulting in a much

simplified set of equations.

The naturaJ modes of the linearized equation can be derived exactly. As pointed out

in [6] (and also alluded to in [10]), the characteristic equation for the modal frequency is a

linear combination of the characteristic equations of the clamped-free case and the pinned-

free case; whether it is closer to one case versus the other depends on the hub inertia.

The set of natural modes is then used to discretize the nonlinear equation of motion under

the sm_n bending assumption. The resulting equation is of the same form as the robotic

equation of motion except only one actuator is present for the infinite degrees of freedom.

Through a passivityanalysisbased on an energy-motivated Lyapunov function,we show that

the proportional plus derivativefeedback of the rotationalangle isglobally asymptotically

stabilizingifa mild detectabilityand stabilizabilitycondition issatisfied.

Some experimental resultsaxe also included, showing the excellentagreement between

the analytic prediction and experimental data for the firstnine bending modes.

This paper isorganized as follows:The large deformation model isderived by using the

Haxnilton'sprinciplein section 2. Small-bending model and then the linearizedmodel are

obtained under the corresponding assumptions. The natural modes for the llnearizedmodel

are obtained in section 4 and they are used to discretizethe small-bending model. The

energy Lyapunov function analysis is used to show the global stabilityof PD joint angle

feedback.

2 Nonlinear Dynamical Motion Equations

The flexible manipulator to be considered is a beam of length L fixed on a hub with rotational

inertia It¢ in the horizontal plane as shown in Fig.1. Let (z °, yO) be the inertial coordinate

system and (x,y) be the coordinate system that rotates with the hub.

The motion of the manipulator has been described by the angular rotation _b due to the

hub rotation, and the horizontal displacement u and the vertical displacement w of the beam

with respect to (z, y) coordinate. Clearly, the base coordinate of an arbitrary point at the

longitudinal axis undergoing the deformation (u, w) is,

{ x°(x,t)= [_+ u(x,t)l co_¢(t)- _,,(x,t) sin _(_)y0(x, t) = [_:+ u(_:,t)] sin,_(t) + _(x, t)cos ¢(t)
(1)

consequently, the square of velocity of the point is ,

(_0)_+ (_o?= (a_w$)_+ [I_+ x)$+ w]_= a_ + a:_
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Figure i: Cantilevered Beam attached to Rotating Hub

where

As in the theory of bending of beams, we have used the normal plane assumption, that is,

the entiretransverse sectionof the beam remains planar and normal to the longitudinalaxis

of the beam alterbending [11].With thisassumption, the followingequation can be derived,

1 M
- (2)

pd E[

where pd denotes the radius of curvature of the deflected axis of the beam, M the corre-

sponding external bending moment, and E1 the flexural rigidity of the beam.

Let 0 be the angle between the tangent of the deflected axis and x-axis. From geometry,
itfollowsthat

I 00
- (3)

p_ Ox "

Since the elongation of the longitudinal axis is assumed to be negligible, the following relation

between 0 and displacements u and w can be obtained,

Ou Ow

cosO = O"x + 1, sinO = O"x" (4)

Since u(O, t)=O azld w(O, t)=O, u and w can be determined in terms of 0 by

f fu(x, t) = cosO((,t)d_, - x, w(x,t) = sinO(_,,t)d,_. (5)
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A variationalapproach isused to derive the dynamical motion equations of flexiblema-

nipulators.To thisend, we need the kineticenergy T mad potentialenergy V of the system,

and the nonconservative work W by the input torque 7"applied on the hub:

I/:T = IH_2 + 2 p[(_o)2+ (!)o)2]dx,

v= _ El _,

W -- 7-_.

where p isthe beam density (mass per unit length).

Hamilton's Principle [12]statesthat,

therefore,

6/b(T-V + W)dt= 0

To carry out the variationalcalculation,we first note that

½_[(_o)2+ (#o)2]

= a.(6u - w6$ - $_w) + a,[6w + (u + s)65 + $6u]

= A.6u + [(u+ s)'A,- wA.]6_+ A_6w+ ($A.- A_)6u

+wA.- (u+ s)A,g_-(hA.+ _)6,_

6 / Tdt / "IH¢5¢dt + ._bb b [ L . .= - /o[(_A,-/x.)6__(_+ _)%- w:'.6_--(_A.+A_)6_,]:d_dt.

Note that allvariations at a and b axe zero. From Appendix I,

foL*(x)_u(x)da:-" --/L sin0(_)_0(_)/L_(_)d_,d_,

After substitution, we arrive at

b b . b L

b L L-- / / [(_A'--_')sinO(_)+(_A:'+_,)c°sO(_)160(_)pdzd_dt

For the potential energy and external work, we have

f /:/: i' I'5 V dt = - El-_z.60 dx dt 6 W dt = _'6_dr.

4
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Substituting these variationalexpressions into Hamilton's Principle, we obtain the fol-

lowing governing integro-partialdifferentialequations for dynamical motion of flexiblema-

nipulators,

E -028 n%-_:= i p {[_,,_,,(_1_ A.(_)lsino(=1+ [6A.(_) + A,,(_)Icoso(=1}e_ (61

efo"= I._ + _ p[(u+ _)a,(_) - _a=(_)]_ (71

with the boundary conditions:

0(0, t) = 0; 0'(L,t) = 0 x = L (8)

The governing equations (6)-(7) and boundary conditions (8) constitute the nonlineax dy-

namical motion equations for one-link flexible manipulators.

3 Linearized Dynamical Motion Equations

Equations (6)-(8) axe integro-differentialequations which axe difficultto work with directly.

We adopt the approach of firstlineaxizingthe equation of motion and obtain the natural

modes, and then use the natural modes as a basis of expansion for the genera/solution of

the nonlinear equation. To thisend, assume that the angle 0 and a/lvelocityquantities axe

small and allterms higher than second order axe negligible.

I 00 02,,,

p_ _ _-_"

Differentiating (6) with respect to z, and keeping only the linear terms, we obtain the Euler-

Bernoulli model for the beam dynamics:

O94%U

EI.._Ix4 + p(x¢ + _) = O, (9)

with the boundary condition

_(o,t) = o, _'(o,t) = o, w"(L,t) = o, _"(L,t) = o, (io)

and the hub dynamics is given by

d fo","- h,_- _ ::(z5 + _,)pdx = o. (II)

Equations (9) and (11), and the corresponding initial and boundary conditions have been

obtained by [3, 6]. The integral equation (11) can be reduced to an algebraic equation. This

is accomplished by multiplying both sides of (9) by z and then integrating over [0, L]. The

result is,



After substitution, (11) can be written as,

- I_$ + EIw"(o,_) = o.

Let v = w + x¢, equations (9) and (11) can be rewritten as,

EI_-i.,+p. _. = o
r- IH_ + Elv"(O,t) = O.

(12)

(13)

The corresponding boundary conditions can be obtained from those for w and ¢ as

v(O,t) = O, v'(O,t) = @ v"(L,t) = O, v'(L,t) = O. (14)

Equations (12) and (13) are the most widely used governing equations for one-link flexible

manipulators, [1, 5]. (However, the additional term pz0 appeared in [5] should be removed).

It should be pointed out that in [1, 5], equation (13) had been actually considered as a

boundary condition and the second equation (clamping condition) in boundary conditions

(14) had not been included. The consequence of such practice is that w and ¢ can not

be determined simultaneously since the system of equations becomes underconstrained. To

solve w and ¢ simultaneously, we believe the clamping condition is required. This can also be

justified by the following boundary variational condition resulted from Hamilton Principle:

02w o_
EI zz2s l __o = 0,

Therefore, either v92w/Oz 2 = 0 or 0w/0z = 0 has to be true at • = 0. Since it has been

assumed that the flexible beam is fixed on the hub, the clamping condition holds. In [4], the

correct boundary conditions (14) axe included but the v"(O, t) term in (13) was missing.

4 Discretization of Linearized Equation along Natu-

ral Modes

A common way to discretize the linearized partial differential equation (12)-(14) is to perform

an eigenanalysis. To this end, consider a sinusoidal torque r = ro sin(wt) applied at the hub.

It is easy to show that the explicit solution of (12)-(14) can be obtained as

¢(t) = ¢osin(wt) (15)

v(z,t) = vo(x)sin(wt) (16)

Substituting the expression back into the partial differential equation (12) results in a fourth-

order ordinary differential equation

ET lltt

JVo -- pca2Vo = 0 (17)

The solution of this equation is given by (except for the rigid body, or the zero frequency

solution)

Vo(X) = Asin(kx) + Bsinh(kx) ÷ Ccos(kx) ÷ Dcosh(kx) (18)

6



mode number analytic (Hz)

0 0

1 2.969

2 7.261

3 17.98

4 34.75

5 57.28

6 85.48

7 119.3

8 158.9

9 204.0

experimental (Hz)

0

2.85

7.20

18.42

35.65

58.70

88.00

126.3

166.6

214.4

Table i: Modal Frequency Comparison

where

EIk 4 = pc#=. (19)

Substituting into Eq. (13) and (14) result in the following matrix equation for the unknown

constants A, B, C, D, and _bo:

0 0 1 1 0

k k 0 0 -i

-s sh -c ch 0

- c ch s sh 0

0 0 -k 2 k 2
EI

A

B

C

D

0

0

0

0

EI

(20)

where we have used the short hand notation s for sin(kL), c for cos(kL), sh for sinh(kL),

and ch for cosh(kL). Define the 5 × 5 matrix in the above equation as .A. Then the resonant

frequenciesare given by the solution of dot .A -- 0 which can be further written as (as in [6])

/Hk3(1 + c ch) + (s ch - c sh) = 0. (21)
P

Note the expression in the first set of parentheses equal to zero is the resonant frequency

condition for a clamped-free beam and the expression in the second set of parentheses

equal to zero is the resonant frequency condition for a pinned-free beam. The countably

infinite number of solutions of (21) correspond to the resonant frequencies of the linearized

rotating beam. In contrast to the assumed mode approach, there is no approximation in

this expression. Therefore, fewer number of calculations need to be performed for a required

number of modes, with higher accuracy.

When _ = 0, which corresponds to the rigid body mode, the eigenfunction is _0(x) = cx,

where c is the normalization constant.

Table 1 lists the experimentally obtained modal frequencies for the first nine bending

modes. They agree with the analytic prediction to within +5%.



Denote the nth solution, n - 1, 2,..., by _, and the nth resonant frequency as w_. The

vector [A, B, C, D, _o]r that lies in the null space of A evaluated at k_ gives the eigenvector

¢_(_).
¢.(z) = A. sin(k_z) + B.sinh(k.z)+C. cos(_z)+ D. cosh(k.z) (22)

where C. ischosen as the arbitraryconstant and

cch+ssh+l

= -sch+csh C.
A_

B_

D_

2p c_

= -_

(23)

From (13) and (14) with r = 0, _ satisfies the following boundary conditions:

¢_(0) = _'(0) = V"(L) = ¢'."(L) = 0
EI¢"(0) = -X._¢(0). (24)

The arbitrary constant can be chosen as a normMiz_tion constant. To derive the or-

thonormality condition,we substitutethe eigenfunction ¢,_(x)into (17) and take the L2[0,L]

innerproduct with ¢,_(x). After integrationby parts,we obtain the orthonormality condi-

tion:

(¢_,¢_) + _'_(0)¢(0) = a6_ (25)
P

where a isa constant that keeps the units consistent (therefore,a has the unit of distance

cube), 6,,,_is the Kronecker delta function. Note that a is usually set to be zero once a

distance unit ischosen.

The normalized rigidbody mode can be explicitlycalculated

1

_o(x) = vq +-- _. (26)

To discretize the linearized partial differential equation (12)-(14), the solution is ex-

panded along the eigenfunctions:

OO

,,(x,t) = _ +,(t),_,,(x)
,t._O

(27)

where %(t) is called the modal amplitude function and ¢_(z) is called the mode shape.

Substituting into the linearized PDE and apply integration by parts (see Appendix II), we

have
_'_(0)

t_,, + w, 2q,, _ r. (28)
ap

In the first order vectorial form, we have

o' ' a_lB ] (29)

8



where q is an infinite dimensional column vector, 0 and I are infinite dimensional zero and

identity matrices, respectively, _'1 is a diagonal matrix with nth diagonal entry w_, and B is

a column with nth element *-2_.

Eq. (29) is of the form

0 z ] (30)A = __2 -D

where D may be a visco--elastic damping operator (a 0 operator in the present case). The

underlying space is X _= _2(0, oo) x gJ(0, z¢). The domain of the operator A is :D(A) =

:D(&22) x T)(D) where

I ° }_(a _) = q s e_(o,_) : _,o,2q,, < _
_-_0

and the domain of D is

T)(D) = (q E _2(0, c¢): Dq is bounded. }.

5 Discretization of the Nonlinear Model

The eigenfunction expansion (27) can be used to discretize the nonlinear dynaznical equation

given in (6-8). To keep the equations tractable, we assume small bending, i.e., w' is small.

Specifically, w and w' are assumed to be of the same order, say O(e), where e is small. All

velocities are assumed to be order 1. Terms with up to quadratic power of e are kept in

the expansion, so the equation of motion is valid up to the linear term in e. This approach

is the same as that in [9], except we do not assume small velocity. This results in nonzero

centrifugal and Coriolis forces which were missing in the equation in [9]. The importance of

these terms is in the preservation of the conservative property of the open loop system after

the approximation. We shall see that this fact has an important consequence in the stability

analysis. With the stated approximation, the kinetic energy becomes

f06 1 1 foL w2_2_2w/L¢ 2uez)l (31/+
where u and _ are approximated by

u(z,t)

6(z,t)

lfo_= -,_. w'(_, t) 2 d_ (32)

Z-= - w'(_,t)tb'(_,t)d_. (33)

The kinetic energy can be expanded along the natural modes of the linearized system. Then,

T = _qTM(q)q

where the mass matrix is

M(q) = aI + A(z)qqr A(z)dz + qr.4_q_'(O)_'T(o)
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q, _(z), _'(0) are infinite dimensional vectors for modal amplitudes, eigenfunctions evaluated

at z, and the spatial derivative of eigenfunction evaluated at O, respectively, and

A(x) = f=(_'(_)- _'(0))(_'(_)- l'(O))r e_

I<A, - (,_(x)- xt'(0//(i(_) - _'(o)) r _.

The modal coordinate q is a generalized _ordinate and the discretized kinetic energy can

be used to find the Coriolis and centrifugal accelerations from

aT
After some algebra, the following expression is obtained:

/ _'(o))(_'(_) _'(o))r d_
f

--/0r'(xP(x) -- x_/'(0))(_(x) -- z_'(0)) r dz]q(tr_'(O)ql'T(o)

+2xP'(O)q r/Z(@(X) -- X_'(0))(XP(x) -- zg'(0)) r dz xP'T(O)_I

_2qT_,(ol fL(L_ 2 Z2
Jo 2 2 )(_'(z)- _'(0))(_'(z)- _'(0)) T dx, q@'r(O)

The discretized nonlinear dynamic equation accurate up to quadratic terms in w and w' can

now be stated (generalizing (29)):

MCq)_ + C(q, _)_ + an2q = p-lqff(0)r = Br. (36)

This can be shown to correspond to the discretization of the following partial differentia/

equation (generalizing (9)):

,3+x_+ EIc_w "2 d [( L2 12) ]p Ox _ +w$_+¢'_ 2 w'

[o,z'z'w,....,]-
The boundary conditions and the dynamic equation for 4' are the same as before:

r- I_¢+ EIw"(O,t) = 0 (38)

w(O,t) = 0, w'(0, t) = 0 w"(L,t) = O, w'"(L,t) = 0. (39)

"2 d z 2
This model generalizes the one in [13] in which only the nonlinear term 4, G [(_' _ )w']

was included. This model also generalizes the one in [7], in which some but not all of the

nonlinear terms are included, which implies the conservative nature of the open loop system

is not preserved under the approximation.

10



6 Passivity, Control, and Stability Analysis

The centrifugal and Coriolis term C(q, ¢1)dl is related to the nonlinear mass matrix in an

important way. Define Mv from the following relationship

l}l(q,q)z = MD(q,z)dl.

Then it is easy to show (same as in [14]) that one choice of C (it is not unique) is

1 r
C(q,q) = Mo(q, 4)- _Mo (q,q). (40)

This relationship has been exploited extensively in the rigid robotics literature for stabihty

analysis and control design, see for example [15, 14]. In fact, we can now show that joint

angle proportional-derivative (PD) control is a stabilizing control law. Consider the following

Lyapunov function candidate

V(q, il) = l ilr M(q)dl + a 2 qr122q + lqr BKvBr q

The derivative of V along the solution is

1 .

V(q, 4 ) = 4Z(--a_2q + Br- C(q,4)4 + _M(q, 4) + aft2q)

= 4rBr.

(41)

Note that the contribution due to C(q, ?1) drops out due to the structure given in (40). The

above energy Lyapunov analysis confirms the fact that the map from r to BT?I (i.e., the

joint angular velocity) is passive which is also the well-known sensor/actuator colocation

condition. Note that if nonlinear terms are only retained in M but not in C as in [9] (i.e.,

setting it to zero, by assuming small q), there would be an M term in _', thus the passivity

property would be destroyed. If r is chosen as a simple joint angle PD control law

r = -KpBr(q - qd,,) - K_B r;t, (42)

where q_, ischosen to satisfy

[BT]simultaneously. It is possible to choose such q_, since 12 is onto (note that the first

component of B is p-' ('_ + L_0) which is non-zero).

With the joint angle PD control, the cloud loop system is stable from the fact that

# = -K_(Br4) 2 < O. Since 1)" _< 0 implies all trajectories are uniformly bound in t, by [16},

the joint angular velocity BT4(t) tends to zero as t --, co. From the governing equation (36),

all higher derivatives q are uniformly bounded. Using Proposition 1 in [17], it follows that

BT_ converges to zero in norm for k >_ 0.

11



At this point, we revert to a local analysis for the linearized system, i.e., consider a neigh-

borhood of the zero equilibrium where 4 is sufficiently small in which asymptotic convergence

for equation (29) implies asymptotic convergence for the nonlinear system described (36). If

only a finite number of modes is undamped, and the damping operator D is bounded relative

to G2, the closed loop infinitesimal generator (which is of the same form as A in (30) except

D is replaced by D + BKvB r and f_2 by 122 + BKpB T) has compact resolvent [18, Section

3.4] which implies that all bounded trajectories are precompact [19, Theorem 5.2]. Hence,

the invariance principle can be applied to the dosed loop infinite-dimensional system, i.e.,

all trajectories converge to the largest invariant set in

"{¢ }Q= q,4):Br4=0 . (43)

If BT4 is detectable, then the largest invaxiant set in Q is just the origin and the zero

equilibrium is asymptotically stable. When does the detectability condition hold? Without

loss of generality, assume the first N modes are undamped. Therefore, to check detectability,

we only need to check the observability of the first N modes. By forming the observability

matrix, it follows that if the N × N matrix

BT

BT K 2

BTK2(N-1)

where K _- _2 + BKI, B T, is invertible, then the obser_rability condition holds and the flexible

beam, with N unstable modes, is stabilized with just joint angle PD feedback. The condition

that O is invertible is very mild, in fact, it is exactly the same as the stabilizability condition

from joint torque.

The above discussion can also be viewed from a general passivity perspective (this line

of reasoning was originally proposed for flexible joint control [20]). This discussion is best

understood through a number of steps:

1. First consider just the joint angular position feedback v = rl - KpBTAq. Then the

map from rl to BT4 is passive by following the above Lyapunov argument.

2. Let C be any strictly passive map that takes BT4 to r_:

r_ = T2 - C( B r 4).

The constant gain I<. feedback is a special case.

3. By the Passivity Theorem [21], the map that takes r2 to BT4 is L2-input/output stable.

4. If the closed loop system is detectable with respect to BT4 and stabilizable with respect

to r=, then the system is internally asymptotically stable.

If the feedback C is restricted to be linear, then it must be strictly positive real [22, 23].

An open and very interesting problem is on choosing a strictly positive real C so that some

12



performance measure (e.g., Hoo norm of some input/output pair for the linearized system)

is optimized. Another implication of the above discussion is that any feedback controller

from Br_ to rl which is itself stable can be "_obustified _ by adding in a suitable amount of

constant gain feedback. Sample data system can be included in this discussion by including

the sampler and zero-order-hold in the consideration of passivity for the feedback system.

7' Concluding Remarks

A nonlinear dynamical model for one-link flexible manipulators undergoing large deforma-

tion has been developed by using Hamilton's Principle. The governing motion equations

in this model are two highly coupled integro-partial differential equations. The paper has

demonstrated that various types of simplified motion equations can be derived systemati-

cally from nonlinear equations by assuming small bending and then small velocity. It has

also been argued that the clamping boundary condition at the hub end should be specified

explicitly in order to determine the bearn deformation and hub rotation simultaneously. The

linearized equation is used to derive the modal frequencies and mode shapes which axe in

turn used to discretize the small bending nonlinear equation. A stability analysis using the

passivity property of this equation is performed to show that joint PD control is globally

stabilizing.
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Appendix I
By Dirichlet formula:

Since,

/: /o"6u(z,t) = - sinO((,t)60(()d_, 6w(z,t) - cmO(_,,t)60(_)d_

therefore,

fon (z)6u(z)dz foLZ(Z) fo=sinO(,)60(,)d_dz = for. f t.- - - sin 0(6)60(_) Z(z)dzd_,

/o+ /o+ Z+ /++= _.(=) cosO(_)60(_)a_dz= cosO(_)60(_) _(z)dzd_.

Appendix II
Innerpmduct both sides of (12) with _b,,, and substitute in the expansion (27) and bound-

ary condition (24) , we have

_,, (¢,, _b,_) + ZI (v"_b,,, - v"O" + v W,_]° - v¢_ o + (v,
n=O P

= _.,_.(_,.,_0_)+ d'(o, tho'(o)-v'(o,t)¢_(o))+_o_(v,_,_)

= _(+,, +_q.)<¢.,_> + _¢.¢0)_(+,, +_q.)¢-(0)_ !
n=O P ,I=0 P

= a(_.+_.2q.)- _-
p

where the last expression is obtained by using the orthonormality condition (25).
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